
Automatic Speech Recognition (ASR) for low-resource languages often relies on synthetic speech generated by pairing Large Language Model (LLM) 

transcripts with Text-to-Speech (TTS) generated audio. However, blindly incorporating synthetic data can introduce mispronunciations, word omissions, 

and prosodic anomalies that degrade ASR performance and increase training time [1], [2]. Previous filtering methods assessed audio-text similarity at the 

sentence level, which masks localized word-level errors, a synthetic utterance may appear semantically aligned while still containing critical defects [3]. 
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WAVe demonstrates strong performance for Whisper Large-V3 on Portuguese across both evaluation 

benchmarks. On Common Voice (in-domain), high-quality filtering achieves 7.94% WER compared to 

8.33% with unfiltered data, while requiring only 575 training steps, a 33% reduction. This efficiency 

stems from removing low-quality samples that introduce conflicting acoustic signals, allowing faster 

convergence. The benefits become even more pronounced for cross-domain generalization on MLS. 

WAVe-filtered CAPES dataset reduces WER from 13.54% to 6.89%, using 19% fewer steps and 30% 

less data. This substantial gain indicates that word-level filtering retains samples with robust acoustic 

representations that transfer well across domains, rather than overfitting to synthesis artifacts and 

hindering performance.

Our approach achieves a 34% average reduction in training steps while simultaneously 

decreasing WER, demonstrating that quality-based filtering delivers both computational efficiency 

and improved accuracy. Most critically, WAVe exhibits strong robustness: cross-domain evaluation 

reveals up to 49%  mp  v m       g     l z      (13.54% → 6.89% MLS W R)  s  g 30% l ss 

data. By retaining only high-quality synthetic samples, our method ensures models learn 

transferable acoustic representations, establishing quality-over-quantity as the key paradigm for 

efficient low-resource ASR augmentation. 

ASR Performance

Word-level alignment supervision notably improves the 

model's ability to distinguish clean from corrupted pairs. For 

Portuguese, figure on the left, the clean-corrupt similarity gap 

increases from 9.85% (without alignment) to 16.31% (with 

alignment), a 6.5% absolute improvement achieved 5 epochs 

earlier. The Dutch language, figure on the right shows larger 

absolute margins (41.09%gap) due to its 60% larger training 

corpus.

WAVe Training Performance 

We present WAVe

(Word-Aligned Verification), a 

multimodal embedding model that 

verifies each word against its 

corresponding audio frame through 

attention-based alignment. A Gated 

Linear Unit (GLU) scorer assigns 

confidence scores to each word, 

enabling fine-grained quality 

assessment.

Our methodology follows a four-stage pipeline: 

1. WAVe Training — We train WAVe via contrastive learning on Common Voice, 

contrasting clean audio-text pairs with corrupted versions to learn alignment.

2. Synthetic Generation — We then generate synthetic data using GPT-4o-mini 

transcripts and OpenAI's TTS (22k Portuguese, 35k Dutch samples).

3. Quality Filtering — The trained WAVe scores each pair (q ∈ [0,1]), partitioning 

them into subsets as shown in the table above.

4. ASR Evaluation — Finally, we fine-tune Whisper (Tiny, Small, Large-v3) on 

filtered data and evaluate on Common Voice and MLS benchmarks. 

The WAVe architecture (right) illustrates the flow from encoders through cross-

modal attention to word-level confidence scoring.
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